

NMR structure determination of a peptide using the ARIA webportal

Henry Jonker

Center for Biomolecular Magnetic Resonance (BMRZ) Institute for Organic Chemistry and Chemical Biology Goethe University - Frankfurt am Main (Germany)

Structure calculation with ARIA (NMR Intensiv kurs 2016)

Structure calculation with ARIA

Distances from NOEs

- NOEs are due to through-space dipole-dipole interactions
 - relate to atom-atom distance (up to ~5 Ångstrom)
 - commonly derived from 2D homonuclear ¹H¹H NOESY spectra and 2D, 3D or 4D heteronuclear (¹5N and/or ¹3C) filtered NOESY spectra

- V_{NOE}: NOE Volume (or intensity)
- d : distance, C : calibration constant

Calibration methods

- divide into classes (old style: strong, medium or weak crosspeak)
- from known distances (intraresidual or secondary structures)
- from preliminary structures (if available)
- median cross peak V_{NOE} corresponds to a given distance

Structure calculation with ARIA

- **NMR** observables that contain structural information:
 - Atom distances
 - NOE (Nuclear Overhauser Effect)
 - Secondary structure, interaction
 - Chemical Shift & Hydrogen Bond
 - Torsion angles
 - ³J Scalar Coupling
 - CCR (Cross Correlated Relaxation)
 - Orientation, shape & long distance
 - RDC (Residual Dipolar Coupling)
 - PCS (Pseudo Contact Shift)
 - PRE (Paramagnetic Relaxation Enhancement)
 - Relaxation data (diffusion anisotropy)

\$

❖ NOE Buildup curves

- Measure multiple NOESY spectra with different mixing times to correct for spin-diffusion and identify indirect NOEs at long mixing times
- A single NOESY spectrum with a sufficient short mixing time can be considered linear in good approximation
- Automatic callibration of NOESY for longer mixing times with relaxation matrix using spin-diffusion & exchange correction
- NOE buildup rate depends on the mobility and can thus differ per molecule, region or domain (fast for rigid parts with long τ_c and slow for flexible loops and termini)
- In complex, transferred NOEs can be observed for small (μM binder) ligands with fast off-rates (detect conformational information of the bound form on the easily observed signals of the free ligand)

Structure calculation with ARIA

Ambiguous Assignment of NOEs

• Frequently multiple assignments possible due to resonance overlap

 Volume and distance of an ambiguous NOESY crosspeak corresponds to the sum of individual contributions:

$$V_{NOE} = \Sigma_a V_{NOE,a}$$

$$d = (\Sigma_a d_a^{-6})^{-1/6}$$

- ADR principle also used for equivalent protons (aromatic, methyl)
- Reduced ambiguity cut-off over the various iterations
- The presence of a wrong assignment possibility has no (or very little) influence on the structure, as long as the correct assignment possibility is present.

Nilges et al. JMB (1997)

* Rotating-frame Overhauser Effect spectroscopy (ROESY)

- Measurement of NOEs using a spin-lock in the rotating-frame to overcome some undesirable features of NOE:
 - NOE is around zero for medium sized molecules (1-3 kDa)
 - Chemical exchange contribution can not be determined for large molecules since it has the same sign as the NOE
- ROE has the same distance corrrelation (d⁶) as the NOE
- The Exchange peaks have opposite sign and can be identified
- The COSY and TOCSY artifacts have opposite sign as well (avoid by reducing the spin-lock power)
- Needs more scans per increment for same S/N ratio as NOESY

Structure calculation with ARIA

- ❖ NOE distance restraints (example: SPARKY & CNS/ARIA)
 - Peak and resonance list from SPARKY

Empirical Forcefield

- General chemical knowledge about the composition of the macromolecule
 - residue definitions (atom composition connectivity, chirality and planarity)
 - linkage of residues in order to generate the sequence
 - atoms types (masses, charges)
 - bond lengths and angles
 - van der Waals and electrostatic interactions
- There are several forcefield implementations available for proteins, RNA and DNA
 - gromos, gromacs, allhdg, amber, charmm, opls, prolsq
- Parametrisation for other molecules (such as modified residues and ligands)
 - have to be generated by hand or can be obtained via PRODRG and/or HIC-UP

Structure calculation with ARIA

- For forcefield: eg. bonds, angles
- $V = c \times (1 I_0)^2$

Flat-bottom Harmonic Potential

• For distance restraints: eg. NOEs, Hydrogen bonds

NMR structure calculations

- Energy potentials (for the force field parameters and NMR data)
- Structure calculation programs try to "fold" a molecule into a 3D structure that agrees with the experimental NMR restraints and the forcefield constraints
- Minimization of the differences, manifested as energy violations, drive the molecule towards its conformation
- The target energy landscape is the sum of squares (or similar) of the violations and has many local minima

Target energy function

 $E_{total} = \sum E_{bonds} + \sum E_{angles} + \sum E_{distances} + \sum E_{rdcs} + \sum E_{...}$

• E : energy from forcefield / restraint violation

Structure calculation with ARIA

\$

Electrostatic interactions

Van der Waals interactions

• Coulombs Law: $V_{elec} = \sum_i \sum_j q_i q_j / 4\pi \epsilon_0 r_{ij}$ $\epsilon = dielectric constant, q = partial point charge$

- Attractive long-range and repulsive short-range forces
- Lennard-Jones: $V_{L-J} = 4\varepsilon \left[(\sigma/r)^{12} (\sigma/r)^6 \right]$ ε = well depth, σ = collision diameter

Structure calculation with ARIA

Typical NMR structure calculation

• NMR data:

- (un)assigned NOESY crosspeaks, resonance assignments, RDCs, dihedral angles, J-couplings, H-bonds, planarity, PRE distances and relaxation data
- Initial structure
 - generate the molecular topology and an extended structure, model or random bundle using the sequence and forcefield

- Iterative structure calculation
 - assign, analyse and callibrate NOEs based on the energetically best structures of the previous iteration
- Energy minimization or the final structures
 - in ARIA, refinement in explicit solvent (water)
- Analyse and validate the final structures
 - repeat the calculation with corrected dataset

Molecular Dynamics (MD)

- Direction of motion depends on forces (restraints and forcefield) and momentum
 - Cartesian Angle Dynamics (CAD, coordinate space) (timestep for flexible bonds and vibrations: 2-5 fs)
 - Torsion Angle Dynamics (TAD, angular space) (about 10 times faster - less degree of freedom)
- MD can overcome local energy barriers
 - temperature relates to kinetic energy and thus velocity
 - scaling and use of different energy terms (increase of restraint energy terms during cool-down)
- Use Simulated Annealing (SA) protocol

Structure calculation with ARIA

Structure Validation

- Does the 3D structure agree well with all the experimental data
 - · check violations and new assignments, backcalculate RDCs, ...
- Cross-validate the structure
 - does unused data (eg. some % NOEs, RDCs, ...) fit well?
- Is the structure phyiscally correct?
 - geometry, bonds, angles, planarity, ... (check energies)
- Validation parameters
 - RMSD with reference structure (when available...)
 - Local-Global alignment method, Global Distance Test Score
 - TM-score, Z-score, Ramachandran plot quality, G-factor
- Validation software
 - Cing (Common Interface for NMR structure Generation)
 - PSVS (Protein Structure Software suite)
 - Procheck, Whatcheck, Whatif, Aqua, Prosa, Molprobity, ...
- Use another method (Aria, Cyana, Xplor, Unio, ...) to confirm

- The webportal uses an adapted version of ARIA (based on 1.2) and automates various steps for the setup and the structure calculation
 - the webportal creates the full setup and submits the structure calculation to one of the computational nodes. The completed full run can be downloaded as a gzipped tar file (.tgz)

Data needed

- Protein Sequence file
 - protein/peptide sequence (eg. "xxx.seq" file)
- Chemical Shift Assignment
 - resonance list (eg. "xxx.shifts" file)
- NOESY or ROESY peak list
 - assigned/unassigned peak list (eg. "xxx.list" file)

• Carefully check and understand the input files before submitting!

Structure calculation with ARIA

Export the resonance list from Sparky

- open your project
- delete unused resonances (dr. Peak Resonances Delete unused resonances)
- show the resonance list (rl, Peak Resonances Resonance list)
- press update after changes
- check the Group and Atom names
 - right nomenclature ?!
 - wrong and unconventional names cause errors or will not be used
- check the error of the resonances (SDev)
 - large error indicates that something has been misassigned
 - selecting a line will show the involved peaks
 - correct the wrong assignments
- save the resonance list (xxx.shifts)

Structure calculation with ARIA

- Sequence file
 - manually create a "xxx.seq" file

at the end: enter / blanc line (counts for all input files)

- create a simple text file (not a word document) with the sequence of your peptide
- use 3-letter amino acid codes separated by a space (do not use tabs)
- first residue is residue is number 1
- used with the selected forcefield to generate the initial extended template PDB file

Structure calculation with ARIA

- Export the NOESY or ROESY peak list from Sparky
 - open your project
 - select your NOESY or ROESY spectrum and show the peak list (It, Peak Peak list)
 - under options select to show " Data height "
 - remove noise / negative peaks ... ?
 - set assignment format to " %A1-%A2 "
 - save the peak list (xxx.list)

❖ WeNMR ARIA Webportal

- from the WeNMR website (www.wenmr.eu) go to: NMR Structure calculation ARIA
- or directly visit: http://enmr.chemie.uni-frankfurt.de/portal/aria.html

Structure calculation with ARIA

Running ARIA

- NOESY or ROESY peak list
 - sparky format
 - enable swapping (option selected)
 - peak list 1: xxx.list
 - resonances: xxx.shifts
 - proton 1: column 1
 - tolerance 0.02 ppm
 - hetero 1: absent
 - proton 2: column 2
 - proton 2: column 2
 - tolerance 0.02 ppm
 - hetero 2: absent

- use all peaks and keep assigned peaks
- do not reset bound for systematic violations (option not selected)

-NOESY peak lists

- do not use spin diffusion and exchange correction (options not selected)

Structure calculation with ARIA

Running ARIA

- Settings
 - protocol for protein
 - 50 structures per iteration
 - 100 structures in last cycle
 - 10 final structures
 - enter your 'lucky' random number
- Input files

- sequence: xxx.seq
- no distance restraints, no hydrogen bonds, no dihedral angles, no planarity restraints

Structure calculation with ARIA

Running ARIA

- Enter user name (testffm) and password (ffmtest) and press submit
- Depending on the complexity and computer usage, it wil take about an hour

* ARIA directory setup (as retrieved from the webportal)

- data
 - sequence, h-bonds, planarity, distances, dihedrals, diffusion, j-couplings, RDCs, s-bonds and converted NOESY data
- protocols and toppar
 - all ARIA protocols and forcefield files
- begin
 - molecular topology and a template extended PDB file which is used as a initial start for the structure calculation
- structures
 - iterations for the structure calculation
 - last iteration inlcudes a water refinement and (violation) analysis
- run.cns
 - settings file for the ARIA run
- finalbundle.pdb
 - final bundle of structures (from structures/it8/water/analysis)
- overview files
 - various info and new restraints from NOESYs

Retrieve and analyse the results

- Check the std.err and std.out file for errors
- Retrieve the results and unpack the aria.tgz file
- Check the template extended PDB file (molmol, pymol) and the input data
 - /begin/aria_template.pdb and /data (eg. sequence and NOESY or ROESY)
- Check for NOE violations
 - /structures/it8/water/analysis/ana_noe_viol_unambig.lis
 - /structures/it8/water/analysis/ana_noe_viol_ambig.lis
- Check for new assignments
 - overview.newunambig (and overview.newambig)
- Check the ramachandran score
 - /structures/it8/water/analysis/procheck_comp/ps-files.zip aria_run1_01.ps
- Inspect the final bundle of structures (using molmol/pymol)
 - finalbundle.pdb, converged? backbone RMSD?
- Try to make a judgement of the succes of the run